
10

International Journal of Advanced Education and Research

www.multidisciplinaryjournals.net

ISSN: 2455-5746

Received: 09-07-2024, Accepted: 08-08-2024, Published: 23-08-2024

Volume 9, Issue 3, 2024, Page No. 10-16

Comparison of activation functions in neural networks

Mukund Agarwal

Department of Computer Science, Sri Sri Academy, Kolkata, West Bengal, India

Abstract
In this study, we explore the impact of various activation functions on the performance of neural networks, specifically
focusing on their application to the MNIST dataset. Neural networks rely heavily on activation functions to introduce non-
linearity into the model, enabling them to learn and model complex patterns. Our research compares six activation functions:
ReLU, Sigmoid, Tanh, Leaky ReLU, ELU, and Swish. We investigate these functions based on key metrics such as accuracy,
training time, training loss history, validation loss history, and accuracy history.
Experiments were conducted using a three-layer fully connected neural network. The MNIST dataset, comprising 60,000
training images and 10,000 test images of handwritten digits, was utilized for training and evaluation. Weights were initialized
using the Kaiming Normal Initialization method, and the Adam optimizer with a learning rate of 0.001 was employed. Each
model was trained for up to 20 epochs with early stopping criteria based on validation accuracy.
Our findings suggest that while ReLU, ELU, and Swish are highly effective for image recognition tasks, the choice of
activation function should be tailored to the specific characteristics of the task and dataset. Future research should explore
newer activation functions like GELU and Mish, the combination of multiple activation functions within a single network, and
their impact on various neural network architectures.

Keywords: Activation functions, neural networks, MNIST dataset, ReLU, sigmoid, tanh, leaky ReLU, ELU, swish, deep
learning, machine learning, gradient saturation, training efficiency

Introduction
Machine learning often utilizes neural network structures to
make predictions and decisions. Neural networks train using
forward propagation, where input data passes through the
layers of the network. Each neuron processes the inputs
received from the previous layer and sends the output to the
next layer until it reaches the output layer. The
mathematical equation for forward propagation is:

a(0)=X
z(l)=W(l)a(l−1)+b(l)

An activation function is added to this weighted sum
equation, introducing non-linearity to the forward
propagation. Without an activation function, the network
performs only linear transformations, which limits its ability
to model complex relationships. Non-linear activation
functions enable hierarchical feature learning, crucial for
tasks like image classification and natural language
processing.
Different activation functions affect how gradients flow
through the network during backpropagation, influencing
the network's learning capability. This study examines
various activation functions and their impact on neural
network training Parameters like accuracy, training loss,
validation loss, and training time.
In deep neural networks, different layers learn different
levels of abstraction. Lower layers might detect simple
features (like edges in images), while higher layers detect
more complex patterns (like shapes or objects). Non-linear
activation functions enable this hierarchical feature learning,
making deep learning effective moreover an activation
functions affect how gradients flow through the network
during backpropagation. Non-linear functions allow
gradients to propagate back through multiple layers,
enabling effective training of deep networks.

Activation functions introduce a form of bias and variability
that helps the network adjust to different data patterns. This
variability allows the network to generalize better to new,
unseen data.
Activation functions in neural networks come in various
forms, each serving a unique purpose and contributing to the
network's learning capability. The different types of
activation function also produce different metric data while
network training like accuracy, training loss history,
validation loss history, accuracy history, and total training
time for each activation function.

Different types of activation functions include:
1. ReLU (Rectified Linear Unit)
The ReLU activation function is defined by the equation
f(x)=max (0, x).
It outputs the input directly if it is positive; otherwise, it
outputs zero. This simplicity makes ReLU one of the most
commonly used activation functions in deep learning
models. Its main advantages include computational
efficiency and the ability to mitigate the vanishing gradient
problem, which allows deep networks to learn more
effectively. However, ReLU can suffer from the "dying
ReLU" problem, where neurons become inactive and only
output zero for all inputs.

2. Sigmoid
It squashes input values to a range between 0 and 1, making
it particularly useful for binary classification tasks where
outputs can be interpreted as probabilities. The sigmoid
function provides a smooth gradient and bounded output
values, aiding in gradient-based optimization. However, it
can suffer from vanishing gradients, especially for very
large or very small input values, and its outputs are not zero-
centred, which can affect convergence during training.

International Journal of Advanced Education and Research www.multidisciplinaryjournals.net

11

3. Tanh (Hyperbolic Tangent)
It squashes input values to a range between -1 and 1,
centring the data around zero, which can lead to more stable
and faster convergence during training. Tanh provides zero-
centred outputs and strong gradients for inputs within the
range of -1 to 1. However, similar to the sigmoid function, it
can suffer from vanishing gradients for very large or very
small input values

4. Leaky Relu
The Leaky ReLU activation function is defined by
f(x)=max (0.01x, x)
It is a variation of ReLU that allows a small, non-zero
gradient when the input is negative, addressing the "dying
ReLU" problem. Leaky ReLU helps prevent neurons from
becoming inactive by permitting a small gradient for
negative inputs while maintaining computational efficiency
similar to ReLU. The choice of the leakage parameter (0.01
in this case) is somewhat arbitrary and may require tuning.

5. ELU (Exponential Linear Unit)
This function introduces smoothness by providing a non-
zero gradient for negative inputs, with the parameter
α\alphaα controlling the value to which an ELU saturates for
negative net inputs. ELU reduces the vanishing gradient
problem and can speed up learning, leading to better
performance. However, it is more computationally
expensive than ReLU due to the exponential calculation,
and the choice of α\alphaα can affect performance and may
require tuning.

6. Swish
Swish is a self-gated activation function defined by the
equation
f(x)=x⋅σ(x)
where σ(x)\sigma(x)σ(x) is the sigmoid function. Swish
tends to perform better than ReLU on deeper models due to

its smooth and non-monotonic nature, which combines
properties of both linear and non-linear activations. It can
improve performance, especially on deeper networks,
though it is more computationally expensive than ReLU.
The non-monotonicity might be less intuitive to understand
and tune.

Experiment

To study the effect of different activation functions,
experiments were conducted using the MNIST dataset. The
dataset consists of 60,000 training images and 10,000 test
images of handwritten digits. The neural network
architecture used included three fully connected layers:
▪ Input layer: 784 neurons
▪ First hidden layer: 128 neurons with batch

normalization and the activation function under test
▪ Second hidden layer: 64 neurons with batch

normalization and the activation function under test
▪ Output layer: 10 neurons for the 10-digit classes
Six activation functions were tested: ReLU, Sigmoid, Tanh,
Leaky ReLU, ELU, and Swish. Weights were initialized
using the Kaiming Normal Initialization method. Cross-
entropy loss was used as the loss function, and the Adam
optimizer with a learning rate of 0.001 was employed. The
model was trained for up to 20 epochs with early stopping if
validation accuracy did not improve for 3 consecutive
epochs.
The experiment was conducted using the PyTorch machine
learning framework within Visual Studio Code 2022,
utilizing Python version 3.9.11. The setup was deployed on
a Windows 11 64-bit operating system, featuring an
integrated APU of Ryzen 5 4000U and 8 GB of RAM.

Experimental data

The data collected during the experiments for various
activation functions is presented below:

Table 1: ReLU (Rectified Linear Unit)

Epoch Training Loss Validation Loss Accuracy (%) Training Time (s)

1 0.4098 0.1775 94.50 17.84

2 0.2084 0.1422 95.65 34.31

3 0.1687 0.1297 95.89 50.57

4 0.1492 0.1176 96.13 66.92

5 0.1361 0.1010 96.70 83.22

6 0.1102 0.0859 97.11 99.48

7 0.1016 0.0821 97.25 116.52

8 0.0998 0.0805 97.34 133.12

9 0.0948 0.0779 97.41 149.50

10 0.0947 0.0769 97.39 166.08

11 0.0908 0.0773 97.55 183.99

12 0.0907 0.0768 97.49 201.53

13 0.0891 0.0766 97.50 219.49

14 0.0892 0.0764 97.38 237.54

Table 2: Sigmoid

Epoch Training Loss Validation Loss Accuracy (%) Training Time (s)

1 0.7707 0.4559 86.72 19.27

2 0.3989 0.2605 92.45 37.43

3 0.2742 0.1992 93.95 55.62

4 0.2277 0.1741 94.69 74.52

5 0.2028 0.1716 94.62 91.75

6 0.1635 0.1273 96.09 108.59

7 0.1560 0.1210 96.30 125.33

8 0.1483 0.1201 96.46 142.98

9 0.1454 0.1190 96.30 159.54

10 0.1414 0.1200 96.25 176.14

11 0.1395 0.1183 96.34 192.50

International Journal of Advanced Education and Research www.multidisciplinaryjournals.net

12

Fig 1: Graphical Representation for ReLu experimental data

Fig 2: Graphical Representation for Sigmoid experimental data

Table 3: Tanh (Hyperbolic Tangent)

EPOCH Training Loss Validation Loss Accuracy (%) Training Time (S)

1 0.4912 0.2969 91.05 16.43

2 0.2785 0.2168 93.27 32.86

3 0.2183 0.1737 94.60 49.22

4 0.1855 0.1438 95.56 65.59

5 0.1673 0.1310 96.00 83.31

6 0.1326 0.1071 96.69 99.93

7 0.1262 0.1012 96.85 116.38

8 0.1198 0.1010 96.82 132.82

9 0.1175 0.0967 96.95 149.27

10 0.1115 0.0970 96.91 165.93

11 0.1100 0.0963 96.95 182.30

12 0.1100 0.0952 96.89 198.72

International Journal of Advanced Education and Research www.multidisciplinaryjournals.net

13

Table 4: Leaky ReLU

EPOCH Training Loss Validation Loss Accuracy (%) Training Time (S)

1 0.4202 0.2003 93.70 16.58

2 0.2151 0.1496 95.40 33.09

3 0.1728 0.1230 96.24 49.62

4 0.1497 0.1118 96.52 66.04

5 0.1377 0.1039 96.62 82.52

6 0.1123 0.0874 97.16 98.91

7 0.1032 0.0855 97.17 115.75

8 0.0999 0.0836 97.19 133.53

9 0.0958 0.0810 97.35 332.08

10 0.0962 0.0780 97.43 348.46

11 0.0927 0.0784 97.47 364.73

12 0.0927 0.0776 97.39 381.08

13 0.0920 0.0789 97.47 397.33

14 0.0904 0.0783 97.46 413.73

Fig 3: Graphical Representation for Leaky ReLU experimental data

Table 5: ELU (Exponential Linear Unit)

EPOCH Training Loss Validation Loss Accuracy (%) Training Time (S)

1 0.4593 0.2561 92.13 16.59

2 0.2591 0.1772 94.66 33.22

3 0.2071 0.1688 94.70 49.99

4 0.1793 0.1412 95.56 66.72

5 0.1610 0.1307 95.89 84.69

6 0.1282 0.0987 96.99 101.71

7 0.1196 0.0981 97.00 118.38

8 0.1157 0.0959 96.97 134.98

9 0.1140 0.0945 97.03 151.57

10 0.1104 0.0917 97.25 168.11

11 0.1081 0.0910 97.22 184.59

12 0.1070 0.0921 97.20 201.03

13 0.1052 0.0907 97.26 217.47

14 0.1050 0.0880 97.32 234.77

15 0.1069 0.0893 97.28 251.30

16 0.1059 0.0894 97.39 273.30

17 0.1050 0.0909 97.21 311.72

International Journal of Advanced Education and Research www.multidisciplinaryjournals.net

14

Fig 4: Graphical Representation for ELU experimental data

Table 6: Swish

EPOCH Training Loss Validation Loss Accuracy (%) Training Time (S)

1 0.4058 0.2002 94.06 39.19

2 0.2107 0.1490 95.22 78.32

3 0.1712 0.1429 95.22 119.57

4 0.1502 0.1091 96.62 158.16

5 0.1341 0.1111 96.48 197.89

6 0.1104 0.0911 97.21 238.00

7 0.1012 0.0895 97.16 277.96

8 0.0998 0.0862 97.41 316.89

9 0.0953 0.0823 97.29 355.97

10 0.0938 0.0822 97.30 394.73

11 0.0923 0.0823 97.40 434.60

Fig 5: Graphical Representation for swish experimental data

International Journal of Advanced Education and Research www.multidisciplinaryjournals.net

15

Data analysis
Accuracy Comparison
1. ReLU (Rectified Linear Unit)
▪ Best Accuracy: 97.55%
▪ Training Time: Moderate
▪ Training Loss History: Quick drop initially, stabilizes

well
▪ Validation Loss History: Low validation loss,

indicating good generalization
▪ Accuracy History: Steady increase, reaches high

accuracy quickly

2. Sigmoid
▪ Best Accuracy: 94.87%
▪ Training Time: Longer
▪ Training Loss History: Slower decrease, prone to

gradient saturation
▪ Validation Loss History: Higher validation loss,

indicating overfitting
▪ Accuracy History: Slower increase, lower overall

accuracy

3. Tanh
▪ Best Accuracy: 95.34%
▪ Training Time: Longer
▪ Training Loss History: Slower decrease, issues with

gradient saturation
▪ Validation Loss History: Higher validation loss,

indicating overfitting
▪ Accuracy History: Slower increase, lower overall

accuracy

4. Leaky ReLU
▪ Best Accuracy: 97.22%
▪ Training Time: Slightly longer than ReLU
▪ Training Loss History: Quick drop initially, stabilizes

well
▪ Validation Loss History: Low validation loss, good

generalization
▪ Accuracy History: Steady increase, reaches high

accuracy

5. ELU (Exponential Linear Unit)
▪ Best Accuracy: 97.40%
▪ Training Time: Longer
▪ Training Loss History: Quick drop initially, stabilizes

well
▪ Validation Loss History: Low validation loss,

indicating good generalization
▪ Accuracy History: Steady increase, reaches high

accuracy

6. Swish
▪ Best Accuracy: 97.35%
▪ Training Time: Longer
▪ Training Loss History: Quick drop initially, stabilizes

well
▪ Validation Loss History: Low validation loss,

indicating good generalization
▪ Accuracy History: Steady increase, reaches high

accuracy

Stability and Convergence
▪ ReLU: Generally, exhibits stable training with fast

convergence due to its linearity for positive inputs,
though it can suffer from the "dying ReLU" problem.

▪ Sigmoid and Tanh: Show signs of instability and slow
convergence, primarily due to gradient saturation,
making them less ideal for deep networks.

▪ Leaky ReLU: Mitigates the dying neuron issue seen in

ReLU, providing more stable training with faster
convergence.

▪ ELU and Swish: Stand out for their high stability and

efficient training, with minimal signs of instability and
fast convergence.

Gradient flow
▪ ReLU and Leaky ReLU: Maintain strong gradients

during backpropagation, promoting faster learning.

▪ Sigmoid and Tanh: Prone to the vanishing gradient

problem because their gradients become very small for
large positive or negative inputs, causing the gradients
of earlier layers to diminish as they propagate backward
through the network. This leads to slow convergence
and difficulty in training deep networks as the weight
updates become negligible.

▪ ELU and Swish: Provide smooth and non-zero-centred

activations, maintaining strong gradients without
causing them to explode, leading to more stable and
efficient training.

Optimal activation function
Based on the experimental results, the most suitable
activation functions for the specific task and model tested (a
neural network trained on the MNIST dataset) are ELU
(Exponential Linear Unit) and Swish. These functions
exhibited high stability, fast convergence, and competitive
accuracy, with ELU achieving 97.40% accuracy and Swish
achieving 97.35%. Both activation functions maintain
strong gradients without causing them to vanish or explode,
leading to efficient and stable training processes. ReLU and
Leaky ReLU are also strong candidates due to their good
stability and fast convergence, with accuracies of 97.55%
and 97.22%, respectively.

Generalization
The findings from this experiment can be generalized to
other models and datasets to some extent, especially for
tasks involving image recognition and classification.
Activation functions like ReLU, Leaky ReLU, ELU, and
Swish are widely used in various neural network
architectures due to their ability to maintain strong
gradients, which is crucial for training deep networks.
However, the generalization of these results may be affected
by factors such as the specific architecture of the network,
the nature of the dataset, and the presence of noise or
imbalanced classes in the data. Different tasks, such as
natural language processing or time series prediction, may
benefit from different activation functions due to their
unique characteristics. Therefore, while ELU and Swish are
recommended for their overall performance, it's essential to
consider the specific requirements and challenges of the
new task and dataset.

Future work

Future research can focus on several areas to further

enhance the performance and understanding of activation

International Journal of Advanced Education and Research www.multidisciplinaryjournals.net

16

functions. One area is experimenting with newer activation

functions that have shown promise in recent studies, such as

GELU (Gaussian Error Linear Unit) and Mish. Additionally,

exploring the combination of multiple activation functions

within a single network could yield interesting insights. For

instance, using different activation functions in different

layers or even dynamically switching activation functions

during training based on certain criteria. Another avenue for

research is investigating the impact of activation functions

on different types of neural network architectures, such as

convolutional neural networks (CNNs), recurrent neural

networks (RNNs), and transformers. Moreover, studying the

effects of activation functions on training stability and

generalization in networks with varying depths and

complexities can provide valuable information. Finally,

developing more sophisticated methods for diagnosing and

addressing the vanishing and exploding gradient problems

can contribute to more robust and efficient training

processes.

Conclusion

The key findings from the experiments indicate that ELU

and Swish are the most suitable activation functions for the

neural network trained on the MNIST dataset, achieving

high accuracy (97.40% and 97.35%, respectively), stability,

and fast convergence. ReLU and Leaky ReLU also

performed well, with ReLU achieving the highest accuracy

at 97.55%, offering good stability and fast convergence

despite occasional issues like the "dying ReLU" problem. In

contrast, Sigmoid and Tanh were less effective due to their

slower convergence and tendency to suffer from vanishing

gradient problems, making them less suitable for deep

networks.

These findings have important implications for neural

network training. The choice of activation function is crucial

for ensuring efficient and stable training, with ELU and

Swish being particularly recommended for their superior

performance, especially in deeper networks. ReLU and

Leaky ReLU are also strong candidates, particularly when

training time is a priority. The generalization of these results

suggests that while ELU and Swish are highly effective for

image recognition tasks like MNIST, their benefits may

extend to other models and datasets, especially those

involving deep networks. However, it is essential to

consider the specific characteristics of different tasks and

datasets, and experimentation with various activation

functions is advised.

For future research, further exploration of newer activation

functions like GELU and Mish is suggested, along with

investigating the potential of combining multiple activation

functions within a single network. Studying the effects of

activation functions on different neural network

architectures, such as CNNs, RNNs, and transformers, and

developing methods to better diagnose and address

vanishing and exploding gradient problems are also valuable

areas of inquiry. In conclusion, the choice of activation

function significantly influences the training dynamics of

neural networks, with ELU and Swish standing out for their

ability to balance stability, convergence speed, and

accuracy, making them excellent choices for deep learning

tasks. Continued research and experimentation with

activation functions will further enhance the robustness and

efficiency of neural network training.

References

1. Che C, Xiao C, Liang J, Jin B, Zho J, Wang F. An RNN

architecture with dynamic temporal matching for

personalized predictions of Parkinson’s disease. In

SIAM on Data Mining, 2017.

https://epubs.siam.org/doi/10.1137/1.9781611974973.2

3

2. Choi E, Bahadori MT, Sun J, Kulas J, Schuetz A,

Stewart W. Retain: an interpretable predictive model

for healthcare using reverse time attention mechanism.

In 30th Conference on Neural Information Processing

Systems (NIPS), 2016.

https://proceedings.neurips.cc/paper/2016/hash/5260d0

791164a4a2a39b32c35835dce4-Abstract.html

3. Coursera. Machine Learning vs. Neural Networks:

What’s the Difference, 2024. Retrieved from

https://www.coursera.org/articles/machine-learning-vs-

neural-networks

4. IBM. Neural Networks (machine learning). Retrieved

from, 2023. https://www.ibm.com/cloud/learn/neural-

networks

5. IBM. What is a Neural Network? Retrieved from, 2023.

https://www.ibm.com/cloud/learn/neural-networks

6. Springer Link. Deep Neural Networks (DNN). In

Introduction to Deep Learning for Healthcare. Springer,

Cham, 2021. https://doi.org/10.1007/978-3-030-82184-

5_4

7. Visual Studio Code. Visual Studio Code. Retrieved

from, 2022. https://code.visualstudio.com/

8. Open AI. ChatGPT [Large language model], 2024.

Retrieved from https://www.openai.com/chatgpt

9. Wikipedia. Neural network (machine learning), 2023.

Retrieved from

https://en.wikipedia.org/wiki/Neural_network

