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Abstract 
In this study, we explore the impact of various activation functions on the performance of neural networks, specifically 
focusing on their application to the MNIST dataset. Neural networks rely heavily on activation functions to introduce non-
linearity into the model, enabling them to learn and model complex patterns. Our research compares six activation functions: 
ReLU, Sigmoid, Tanh, Leaky ReLU, ELU, and Swish. We investigate these functions based on key metrics such as accuracy, 
training time, training loss history, validation loss history, and accuracy history. 
Experiments were conducted using a three-layer fully connected neural network. The MNIST dataset, comprising 60,000 
training images and 10,000 test images of handwritten digits, was utilized for training and evaluation. Weights were initialized 
using the Kaiming Normal Initialization method, and the Adam optimizer with a learning rate of 0.001 was employed. Each 
model was trained for up to 20 epochs with early stopping criteria based on validation accuracy. 
Our findings suggest that while ReLU, ELU, and Swish are highly effective for image recognition tasks, the choice of 
activation function should be tailored to the specific characteristics of the task and dataset. Future research should explore 
newer activation functions like GELU and Mish, the combination of multiple activation functions within a single network, and 
their impact on various neural network architectures. 
 
Keywords: Activation functions, neural networks, MNIST dataset, ReLU, sigmoid, tanh, leaky ReLU, ELU, swish, deep 
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Introduction 
Machine learning often utilizes neural network structures to 
make predictions and decisions. Neural networks train using 
forward propagation, where input data passes through the 
layers of the network. Each neuron processes the inputs 
received from the previous layer and sends the output to the 
next layer until it reaches the output layer. The 
mathematical equation for forward propagation is: 

a(0)=X 
z(l)=W(l)a(l−1)+b(l) 

 
An activation function is added to this weighted sum 
equation, introducing non-linearity to the forward 
propagation. Without an activation function, the network 
performs only linear transformations, which limits its ability 
to model complex relationships. Non-linear activation 
functions enable hierarchical feature learning, crucial for 
tasks like image classification and natural language 
processing. 
Different activation functions affect how gradients flow 
through the network during backpropagation, influencing 
the network's learning capability. This study examines 
various activation functions and their impact on neural 
network training Parameters like accuracy, training loss, 
validation loss, and training time. 
In deep neural networks, different layers learn different 
levels of abstraction. Lower layers might detect simple 
features (like edges in images), while higher layers detect 
more complex patterns (like shapes or objects). Non-linear 
activation functions enable this hierarchical feature learning, 
making deep learning effective moreover an activation 
functions affect how gradients flow through the network 
during backpropagation. Non-linear functions allow 
gradients to propagate back through multiple layers, 
enabling effective training of deep networks.  

Activation functions introduce a form of bias and variability 
that helps the network adjust to different data patterns. This 
variability allows the network to generalize better to new, 
unseen data. 
Activation functions in neural networks come in various 
forms, each serving a unique purpose and contributing to the 
network's learning capability. The different types of 
activation function also produce different metric data while 
network training like accuracy, training loss history, 
validation loss history, accuracy history, and total training 
time for each activation function. 
 
Different types of activation functions include: 
1. ReLU (Rectified Linear Unit) 
The ReLU activation function is defined by the equation 
f(x)=max (0, x).  
It outputs the input directly if it is positive; otherwise, it 
outputs zero. This simplicity makes ReLU one of the most 
commonly used activation functions in deep learning 
models. Its main advantages include computational 
efficiency and the ability to mitigate the vanishing gradient 
problem, which allows deep networks to learn more 
effectively. However, ReLU can suffer from the "dying 
ReLU" problem, where neurons become inactive and only 
output zero for all inputs. 
 
2. Sigmoid 
It squashes input values to a range between 0 and 1, making 
it particularly useful for binary classification tasks where 
outputs can be interpreted as probabilities. The sigmoid 
function provides a smooth gradient and bounded output 
values, aiding in gradient-based optimization. However, it 
can suffer from vanishing gradients, especially for very 
large or very small input values, and its outputs are not zero-
centred, which can affect convergence during training. 
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3. Tanh (Hyperbolic Tangent) 
It squashes input values to a range between -1 and 1, 
centring the data around zero, which can lead to more stable 
and faster convergence during training. Tanh provides zero-
centred outputs and strong gradients for inputs within the 
range of -1 to 1. However, similar to the sigmoid function, it 
can suffer from vanishing gradients for very large or very 
small input values 
 
4. Leaky Relu 
The Leaky ReLU activation function is defined by  
f(x)=max (0.01x, x) 
It is a variation of ReLU that allows a small, non-zero 
gradient when the input is negative, addressing the "dying 
ReLU" problem. Leaky ReLU helps prevent neurons from 
becoming inactive by permitting a small gradient for 
negative inputs while maintaining computational efficiency 
similar to ReLU. The choice of the leakage parameter (0.01 
in this case) is somewhat arbitrary and may require tuning. 
 
5. ELU (Exponential Linear Unit) 
This function introduces smoothness by providing a non-
zero gradient for negative inputs, with the parameter 
α\alphaα controlling the value to which an ELU saturates for 
negative net inputs. ELU reduces the vanishing gradient 
problem and can speed up learning, leading to better 
performance. However, it is more computationally 
expensive than ReLU due to the exponential calculation, 
and the choice of α\alphaα can affect performance and may 
require tuning. 
 
6. Swish 
Swish is a self-gated activation function defined by the 
equation  
f(x)=x⋅σ(x) 
where σ(x)\sigma(x)σ(x) is the sigmoid function. Swish 
tends to perform better than ReLU on deeper models due to  

its smooth and non-monotonic nature, which combines 
properties of both linear and non-linear activations. It can 
improve performance, especially on deeper networks, 
though it is more computationally expensive than ReLU. 
The non-monotonicity might be less intuitive to understand 
and tune. 
 

Experiment 

To study the effect of different activation functions, 
experiments were conducted using the MNIST dataset. The 
dataset consists of 60,000 training images and 10,000 test 
images of handwritten digits. The neural network 
architecture used included three fully connected layers: 
▪ Input layer: 784 neurons 
▪ First hidden layer: 128 neurons with batch 

normalization and the activation function under test 
▪ Second hidden layer: 64 neurons with batch 

normalization and the activation function under test 
▪ Output layer: 10 neurons for the 10-digit classes 
Six activation functions were tested: ReLU, Sigmoid, Tanh, 
Leaky ReLU, ELU, and Swish. Weights were initialized 
using the Kaiming Normal Initialization method. Cross-
entropy loss was used as the loss function, and the Adam 
optimizer with a learning rate of 0.001 was employed. The 
model was trained for up to 20 epochs with early stopping if 
validation accuracy did not improve for 3 consecutive 
epochs. 
The experiment was conducted using the PyTorch machine 
learning framework within Visual Studio Code 2022, 
utilizing Python version 3.9.11. The setup was deployed on 
a Windows 11 64-bit operating system, featuring an 
integrated APU of Ryzen 5 4000U and 8 GB of RAM. 
 

Experimental data 

The data collected during the experiments for various 
activation functions is presented below: 

 
Table 1: ReLU (Rectified Linear Unit) 

 

Epoch Training Loss Validation Loss Accuracy (%) Training Time (s) 

1 0.4098 0.1775 94.50 17.84 

2 0.2084 0.1422 95.65 34.31 

3 0.1687 0.1297 95.89 50.57 

4 0.1492 0.1176 96.13 66.92 

5 0.1361 0.1010 96.70 83.22 

6 0.1102 0.0859 97.11 99.48 

7 0.1016 0.0821 97.25 116.52 

8 0.0998 0.0805 97.34 133.12 

9 0.0948 0.0779 97.41 149.50 

10 0.0947 0.0769 97.39 166.08 

11 0.0908 0.0773 97.55 183.99 

12 0.0907 0.0768 97.49 201.53 

13 0.0891 0.0766 97.50 219.49 

14 0.0892 0.0764 97.38 237.54 
 

Table 2: Sigmoid 
 

Epoch Training Loss Validation Loss Accuracy (%) Training Time (s) 

1 0.7707 0.4559 86.72 19.27 

2 0.3989 0.2605 92.45 37.43 

3 0.2742 0.1992 93.95 55.62 

4 0.2277 0.1741 94.69 74.52 

5 0.2028 0.1716 94.62 91.75 

6 0.1635 0.1273 96.09 108.59 

7 0.1560 0.1210 96.30 125.33 

8 0.1483 0.1201 96.46 142.98 

9 0.1454 0.1190 96.30 159.54 

10 0.1414 0.1200 96.25 176.14 

11 0.1395 0.1183 96.34 192.50 
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Fig 1: Graphical Representation for ReLu experimental data 

 
 

Fig 2: Graphical Representation for Sigmoid experimental data 

 
Table 3: Tanh (Hyperbolic Tangent) 

 

EPOCH Training Loss Validation Loss Accuracy (%) Training Time (S) 

1 0.4912 0.2969 91.05 16.43 

2 0.2785 0.2168 93.27 32.86 

3 0.2183 0.1737 94.60 49.22 

4 0.1855 0.1438 95.56 65.59 

5 0.1673 0.1310 96.00 83.31 

6 0.1326 0.1071 96.69 99.93 

7 0.1262 0.1012 96.85 116.38 

8 0.1198 0.1010 96.82 132.82 

9 0.1175 0.0967 96.95 149.27 

10 0.1115 0.0970 96.91 165.93 

11 0.1100 0.0963 96.95 182.30 

12 0.1100 0.0952 96.89 198.72 
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Table 4: Leaky ReLU 
 

EPOCH Training Loss Validation Loss Accuracy (%) Training Time (S) 

1 0.4202 0.2003 93.70 16.58 

2 0.2151 0.1496 95.40 33.09 

3 0.1728 0.1230 96.24 49.62 

4 0.1497 0.1118 96.52 66.04 

5 0.1377 0.1039 96.62 82.52 

6 0.1123 0.0874 97.16 98.91 

7 0.1032 0.0855 97.17 115.75 

8 0.0999 0.0836 97.19 133.53 

9 0.0958 0.0810 97.35 332.08 

10 0.0962 0.0780 97.43 348.46 

11 0.0927 0.0784 97.47 364.73 

12 0.0927 0.0776 97.39 381.08 

13 0.0920 0.0789 97.47 397.33 

14 0.0904 0.0783 97.46 413.73 

 

 
 

Fig 3: Graphical Representation for Leaky ReLU experimental data 

 
Table 5: ELU (Exponential Linear Unit) 

 

EPOCH Training Loss Validation Loss Accuracy (%) Training Time (S) 

1 0.4593 0.2561 92.13 16.59 

2 0.2591 0.1772 94.66 33.22 

3 0.2071 0.1688 94.70 49.99 

4 0.1793 0.1412 95.56 66.72 

5 0.1610 0.1307 95.89 84.69 

6 0.1282 0.0987 96.99 101.71 

7 0.1196 0.0981 97.00 118.38 

8 0.1157 0.0959 96.97 134.98 

9 0.1140 0.0945 97.03 151.57 

10 0.1104 0.0917 97.25 168.11 

11 0.1081 0.0910 97.22 184.59 

12 0.1070 0.0921 97.20 201.03 

13 0.1052 0.0907 97.26 217.47 

14 0.1050 0.0880 97.32 234.77 

15 0.1069 0.0893 97.28 251.30 

16 0.1059 0.0894 97.39 273.30 

17 0.1050 0.0909 97.21 311.72 
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Fig 4: Graphical Representation for ELU experimental data 

 
Table 6: Swish 

 

EPOCH Training Loss Validation Loss Accuracy (%) Training Time (S) 

1 0.4058 0.2002 94.06 39.19 

2 0.2107 0.1490 95.22 78.32 

3 0.1712 0.1429 95.22 119.57 

4 0.1502 0.1091 96.62 158.16 

5 0.1341 0.1111 96.48 197.89 

6 0.1104 0.0911 97.21 238.00 

7 0.1012 0.0895 97.16 277.96 

8 0.0998 0.0862 97.41 316.89 

9 0.0953 0.0823 97.29 355.97 

10 0.0938 0.0822 97.30 394.73 

11 0.0923 0.0823 97.40 434.60 

 

 
 

Fig 5: Graphical Representation for swish experimental data 
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Data analysis 
Accuracy Comparison 
1. ReLU (Rectified Linear Unit) 
▪ Best Accuracy: 97.55% 
▪ Training Time: Moderate 
▪ Training Loss History: Quick drop initially, stabilizes 

well 
▪ Validation Loss History: Low validation loss, 

indicating good generalization 
▪ Accuracy History: Steady increase, reaches high 

accuracy quickly 
 
2. Sigmoid 
▪ Best Accuracy: 94.87% 
▪ Training Time: Longer 
▪ Training Loss History: Slower decrease, prone to 

gradient saturation 
▪ Validation Loss History: Higher validation loss, 

indicating overfitting 
▪ Accuracy History: Slower increase, lower overall 

accuracy 
 
3. Tanh 
▪ Best Accuracy: 95.34% 
▪ Training Time: Longer 
▪ Training Loss History: Slower decrease, issues with 

gradient saturation 
▪ Validation Loss History: Higher validation loss, 

indicating overfitting 
▪ Accuracy History: Slower increase, lower overall 

accuracy 
 
4. Leaky ReLU 
▪ Best Accuracy: 97.22% 
▪ Training Time: Slightly longer than ReLU 
▪ Training Loss History: Quick drop initially, stabilizes 

well 
▪ Validation Loss History: Low validation loss, good 

generalization 
▪ Accuracy History: Steady increase, reaches high 

accuracy 
 
5. ELU (Exponential Linear Unit) 
▪ Best Accuracy: 97.40% 
▪ Training Time: Longer 
▪ Training Loss History: Quick drop initially, stabilizes 

well 
▪ Validation Loss History: Low validation loss, 

indicating good generalization 
▪ Accuracy History: Steady increase, reaches high 

accuracy 
 
6. Swish 
▪ Best Accuracy: 97.35% 
▪ Training Time: Longer 
▪ Training Loss History: Quick drop initially, stabilizes 

well 
▪ Validation Loss History: Low validation loss, 

indicating good generalization 
▪ Accuracy History: Steady increase, reaches high 

accuracy 
 
Stability and Convergence 
▪ ReLU: Generally, exhibits stable training with fast 

convergence due to its linearity for positive inputs, 
though it can suffer from the "dying ReLU" problem. 

 

▪ Sigmoid and Tanh: Show signs of instability and slow 
convergence, primarily due to gradient saturation, 
making them less ideal for deep networks. 

 
▪ Leaky ReLU: Mitigates the dying neuron issue seen in 

ReLU, providing more stable training with faster 
convergence. 

 
▪ ELU and Swish: Stand out for their high stability and 

efficient training, with minimal signs of instability and 
fast convergence. 

 
 
Gradient flow 
▪ ReLU and Leaky ReLU: Maintain strong gradients 

during backpropagation, promoting faster learning. 
 
▪ Sigmoid and Tanh: Prone to the vanishing gradient 

problem because their gradients become very small for 
large positive or negative inputs, causing the gradients 
of earlier layers to diminish as they propagate backward 
through the network. This leads to slow convergence 
and difficulty in training deep networks as the weight 
updates become negligible. 

 
▪ ELU and Swish: Provide smooth and non-zero-centred 

activations, maintaining strong gradients without 
causing them to explode, leading to more stable and 
efficient training. 

 
Optimal activation function 
Based on the experimental results, the most suitable 
activation functions for the specific task and model tested (a 
neural network trained on the MNIST dataset) are ELU 
(Exponential Linear Unit) and Swish. These functions 
exhibited high stability, fast convergence, and competitive 
accuracy, with ELU achieving 97.40% accuracy and Swish 
achieving 97.35%. Both activation functions maintain 
strong gradients without causing them to vanish or explode, 
leading to efficient and stable training processes. ReLU and 
Leaky ReLU are also strong candidates due to their good 
stability and fast convergence, with accuracies of 97.55% 
and 97.22%, respectively. 
 
Generalization 
The findings from this experiment can be generalized to 
other models and datasets to some extent, especially for 
tasks involving image recognition and classification. 
Activation functions like ReLU, Leaky ReLU, ELU, and 
Swish are widely used in various neural network 
architectures due to their ability to maintain strong 
gradients, which is crucial for training deep networks. 
However, the generalization of these results may be affected 
by factors such as the specific architecture of the network, 
the nature of the dataset, and the presence of noise or 
imbalanced classes in the data. Different tasks, such as 
natural language processing or time series prediction, may 
benefit from different activation functions due to their 
unique characteristics. Therefore, while ELU and Swish are 
recommended for their overall performance, it's essential to 
consider the specific requirements and challenges of the 
new task and dataset. 

 

Future work 

Future research can focus on several areas to further 

enhance the performance and understanding of activation 



International Journal of Advanced Education and Research  www.multidisciplinaryjournals.net 

16 

functions. One area is experimenting with newer activation 

functions that have shown promise in recent studies, such as 

GELU (Gaussian Error Linear Unit) and Mish. Additionally, 

exploring the combination of multiple activation functions 

within a single network could yield interesting insights. For 

instance, using different activation functions in different 

layers or even dynamically switching activation functions 

during training based on certain criteria. Another avenue for 

research is investigating the impact of activation functions 

on different types of neural network architectures, such as 

convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), and transformers. Moreover, studying the 

effects of activation functions on training stability and 

generalization in networks with varying depths and 

complexities can provide valuable information. Finally, 

developing more sophisticated methods for diagnosing and 

addressing the vanishing and exploding gradient problems 

can contribute to more robust and efficient training 

processes. 

 

Conclusion 

The key findings from the experiments indicate that ELU 

and Swish are the most suitable activation functions for the 

neural network trained on the MNIST dataset, achieving 

high accuracy (97.40% and 97.35%, respectively), stability, 

and fast convergence. ReLU and Leaky ReLU also 

performed well, with ReLU achieving the highest accuracy 

at 97.55%, offering good stability and fast convergence 

despite occasional issues like the "dying ReLU" problem. In 

contrast, Sigmoid and Tanh were less effective due to their 

slower convergence and tendency to suffer from vanishing 

gradient problems, making them less suitable for deep 

networks. 

These findings have important implications for neural 

network training. The choice of activation function is crucial 

for ensuring efficient and stable training, with ELU and 

Swish being particularly recommended for their superior 

performance, especially in deeper networks. ReLU and 

Leaky ReLU are also strong candidates, particularly when 

training time is a priority. The generalization of these results 

suggests that while ELU and Swish are highly effective for 

image recognition tasks like MNIST, their benefits may 

extend to other models and datasets, especially those 

involving deep networks. However, it is essential to 

consider the specific characteristics of different tasks and 

datasets, and experimentation with various activation 

functions is advised. 

For future research, further exploration of newer activation 

functions like GELU and Mish is suggested, along with 

investigating the potential of combining multiple activation 

functions within a single network. Studying the effects of 

activation functions on different neural network 

architectures, such as CNNs, RNNs, and transformers, and 

developing methods to better diagnose and address 

vanishing and exploding gradient problems are also valuable 

areas of inquiry. In conclusion, the choice of activation 

function significantly influences the training dynamics of 

neural networks, with ELU and Swish standing out for their 

ability to balance stability, convergence speed, and 

accuracy, making them excellent choices for deep learning 

tasks. Continued research and experimentation with 

activation functions will further enhance the robustness and 

efficiency of neural network training. 
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