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Abstract

In this study, we explore the impact of various activation functions on the performance of neural networks, specifically
focusing on their application to the MNIST dataset. Neural networks rely heavily on activation functions to introduce non-
linearity into the model, enabling them to learn and model complex patterns. Our research compares six activation functions:
ReL U, Sigmoid, Tanh, Leaky ReLU, ELU, and Swish. We investigate these functions based on key metrics such as accuracy,
training time, training loss history, validation loss history, and accuracy history.

Experiments were conducted using a three-layer fully connected neural network. The MNIST dataset, comprising 60,000
training images and 10,000 test images of handwritten digits, was utilized for training and evaluation. Weights were initialized
using the Kaiming Normal Initialization method, and the Adam optimizer with a learning rate of 0.001 was employed. Each
model was trained for up to 20 epochs with early stopping criteria based on validation accuracy.

Our findings suggest that while ReLU, ELU, and Swish are highly effective for image recognition tasks, the choice of
activation function should be tailored to the specific characteristics of the task and dataset. Future research should explore
newer activation functions like GELU and Mish, the combination of multiple activation functions within a single network, and
their impact on various neural network architectures.

Keywords: Activation functions, neural networks, MNIST dataset, ReLU, sigmoid, tanh, leaky ReLU, ELU, swish, deep
learning, machine learning, gradient saturation, training efficiency

Introduction Activation functions introduce a form of bias and variability
Machine learning often utilizes neural network structures to that helps the network adjust to different data patterns. This
make predictions and decisions. Neural networks train using variability allows the network to generalize better to new,
forward propagation, where input data passes through the unseen data.
layers of the network. Each neuron processes the inputs Activation functions in neural networks come in various
received from the previous layer and sends the output to the forms, each serving a unique purpose and contributing to the
next layer until it reaches the output layer. The network's learning capability. The different types of
mathematical equation for forward propagation is: activation function also produce different metric data while
a(0)=X network training like accuracy, training loss history,
z(1)=W(l)a(1-1)+b(l) validation loss history, accuracy history, and total training

time for each activation function.
An activation function is added to this weighted sum

equation, introducing non-linearity to the forward Different types of activation functions include:

propagation. Without an activation function, the network 1. ReLU (Rectified Linear Unit)

performs only linear transformations, which limits its ability The ReLU activation function is defined by the equation

to model complex relationships. Non-linear activation f(x)=max (0, x).

functions enable hierarchical feature learning, crucial for It outputs the input directly if it is positive; otherwise, it
tasks like image classification and natural language outputs zero. This simplicity makes ReLU one of the most
processing. commonly used activation functions in deep learning
Different activation functions affect how gradients flow models. Its main advantages include computational
through the network during backpropagation, influencing efficiency and the ability to mitigate the vanishing gradient
the network's learning capability. This study examines problem, which allows deep networks to learn more
various activation functions and their impact on neural effectively. However, ReLU can suffer from the "dying
network training Parameters like accuracy, training loss, ReLU" problem, where neurons become inactive and only
validation loss, and training time. output zero for all inputs.

In deep neural networks, different layers learn different

levels of abstraction. Lower layers might detect simple 2. Sigmoid

features (like edges in images), while higher layers detect It squashes input values to a range between 0 and 1, making
more complex patterns (like shapes or objects). Non-linear it particularly useful for binary classification tasks where
activation functions enable this hierarchical feature learning, outputs can be interpreted as probabilities. The sigmoid
making deep learning effective moreover an activation function provides a smooth gradient and bounded output
functions affect how gradients flow through the network values, aiding in gradient-based optimization. However, it
during backpropagation. Non-linear functions allow can suffer from vanishing gradients, especially for very
gradients to propagate back through multiple layers, large or very small input values, and its outputs are not zero-
enabling effective training of deep networks. centred, which can affect convergence during training.
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3. Tanh (Hyperbolic Tangent)

It squashes input values to a range between -1 and 1,
centring the data around zero, which can lead to more stable
and faster convergence during training. Tanh provides zero-
centred outputs and strong gradients for inputs within the
range of -1 to 1. However, similar to the sigmoid function, it
can suffer from vanishing gradients for very large or very
small input values

4. Leaky Relu

The Leaky ReLU activation function is defined by
f(x)=max (0.01x, x)

It is a variation of ReLU that allows a small, non-zero
gradient when the input is negative, addressing the "dying
ReLU" problem. Leaky ReLU helps prevent neurons from
becoming inactive by permitting a small gradient for
negative inputs while maintaining computational efficiency
similar to ReLU. The choice of the leakage parameter (0.01
in this case) is somewhat arbitrary and may require tuning.

5. ELU (Exponential Linear Unit)

This function introduces smoothness by providing a non-
zero gradient for negative inputs, with the parameter
a\alphaa controlling the value to which an ELU saturates for
negative net inputs. ELU reduces the vanishing gradient
problem and can speed up learning, leading to better
performance. However, it is more computationally
expensive than ReLU due to the exponential calculation,
and the choice of a\alphaa can affect performance and may
require tuning.

6. Swish

Swish is a self-gated activation function defined by the
equation

f(xX)=x-6(x)

where o(x)\sigma(x)o(x) is the sigmoid function. Swish
tends to perform better than ReLU on deeper models due to
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its smooth and non-monotonic nature, which combines
properties of both linear and non-linear activations. It can
improve performance, especially on deeper networks,
though it is more computationally expensive than RelLU.
The non-monotonicity might be less intuitive to understand
and tune.

Experiment

To study the effect of different activation functions,

experiments were conducted using the MNIST dataset. The

dataset consists of 60,000 training images and 10,000 test

images of handwritten digits. The neural network

architecture used included three fully connected layers:

= Input layer: 784 neurons

= First hidden layer: 128 neurons with batch
normalization and the activation function under test

= Second hidden layer: 64 neurons with batch
normalization and the activation function under test

= Qutput layer: 10 neurons for the 10-digit classes

Six activation functions were tested: ReLU, Sigmoid, Tanh,

Leaky ReLU, ELU, and Swish. Weights were initialized

using the Kaiming Normal Initialization method. Cross-

entropy loss was used as the loss function, and the Adam

optimizer with a learning rate of 0.001 was employed. The

model was trained for up to 20 epochs with early stopping if

validation accuracy did not improve for 3 consecutive

epochs.

The experiment was conducted using the PyTorch machine

learning framework within Visual Studio Code 2022,

utilizing Python version 3.9.11. The setup was deployed on

a Windows 11 64-bit operating system, featuring an

integrated APU of Ryzen 5 4000U and 8 GB of RAM.

Experimental data
The data collected during the experiments for various
activation functions is presented below:

Table 1: ReL U (Rectified Linear Unit)

Epoch Training Loss Validation Loss Accuracy (%) Training Time ()
1 0.4098 0.1775 94.50 17.84
2 0.2084 0.1422 95.65 34.31
3 0.1687 0.1297 95.89 50.57
4 0.1492 0.1176 96.13 66.92
5 0.1361 0.1010 96.70 83.22
6 0.1102 0.0859 97.11 99.48
7 0.1016 0.0821 97.25 116.52
8 0.0998 0.0805 97.34 133.12
9 0.0948 0.0779 97.41 149.50
10 0.0947 0.0769 97.39 166.08
11 0.0908 0.0773 97.55 183.99
12 0.0907 0.0768 97.49 201.53
13 0.0891 0.0766 97.50 219.49
14 0.0892 0.0764 97.38 237.54

Table 2: Sigmoid

Epoch Training Loss Validation Loss Accuracy (%) Training Time (s)
1 0.7707 0.4559 86.72 19.27
2 0.3989 0.2605 92.45 37.43
3 0.2742 0.1992 93.95 55.62
4 0.2277 0.1741 94.69 74.52
5 0.2028 0.1716 94.62 91.75
6 0.1635 0.1273 96.09 108.59
7 0.1560 0.1210 96.30 125.33
8 0.1483 0.1201 96.46 142.98
9 0.1454 0.1190 96.30 159.54

10 0.1414 0.1200 96.25 176.14
11 0.1395 0.1183 96.34 192.50

11



International Journal of Advanced Education and Research

www.multidisciplinaryjournals.net

Training Loss for relu

Validation Loss for relu

040 Iraining Leds 018f Aalicn Lais
0,35 0.16
0.30 0.14
2oas E:
= a2t
0.20
BAE 010
0.10 0.08
2 4 3 B 10 12 14 4 [3 8 10 12 14
Epach Epoch
Accuracy for relu Training Time for relu
975 Trainineg Time
a7.0 200
F 96.5
= 7 150
- LT
g 965.0 E
] F 100
= 95.5
95.0 sl
84,5 i P i
2 4 & B 10 12 14 F [ 8 10 12 14
Epach Epoch

Fig 1: Graphical Representation for ReLu experimental data
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Fig 2: Graphical Representation for Sigmoid experimental data

Table 3: Tanh (Hyperbolic Tangent)

EPOCH Training Loss Validation Loss Accuracy (%) Training Time (S)
1 0.4912 0.2969 91.05 16.43
2 0.2785 0.2168 93.27 32.86
3 0.2183 0.1737 94.60 49.22
4 0.1855 0.1438 95.56 65.59
5 0.1673 0.1310 96.00 83.31
6 0.1326 0.1071 96.69 99.93
7 0.1262 0.1012 96.85 116.38
8 0.1198 0.1010 96.82 132.82
9 0.1175 0.0967 96.95 149.27
10 0.1115 0.0970 96.91 165.93
11 0.1100 0.0963 96.95 182.30
12 0.1100 0.0952 96.89 198.72
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Table 4: Leaky ReLU
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EPOCH Training Loss Validation Loss Accuracy (%) Training Time (S)
1 0.4202 0.2003 93.70 16.58
2 0.2151 0.1496 95.40 33.09
3 0.1728 0.1230 96.24 49.62
4 0.1497 0.1118 96.52 66.04
5 0.1377 0.1039 96.62 82.52
6 0.1123 0.0874 97.16 98.91
7 0.1032 0.0855 97.17 115.75
8 0.0999 0.0836 97.19 133.53
9 0.0958 0.0810 97.35 332.08
10 0.0962 0.0780 97.43 348.46
11 0.0927 0.0784 97.47 364.73
12 0.0927 0.0776 97.39 381.08
13 0.0920 0.0789 97.47 397.33
14 0.0904 0.0783 97.46 413.73
Training Loss for leaky _relu Validation Loss for leaky relu
Tainirg Loss 0,20 Walidation Loss
0.40
0.35 018
0.30 0.16
£oast 014
0201 0.12
0.15 0.10
0.10 0.08
F 4 E B 10 !I? ]Id 2 4 E B 10 II? ]I-t
Epach Epoch
Accuracy for leaky _relu Training Time for leaky _relu
975 I —— -
. 400 L #f,.,-f"
aror 350 e
_ eap 300 f/
3;.:" 96.0 5 250 /
E 85.5 E 200
Fos0} . 150
94.5 100
84.0 50 __,_..-r"’ff
] 4 B B 0 1z 14 ¢ F] ] B B ST ¥] 14
Epach Epoch
Fig 3: Graphical Representation for Leaky ReLU experimental data
Table 5: ELU (Exponential Linear Unit)
EPOCH Training Loss Validation Loss Accuracy (%) Training Time (S)
1 0.4593 0.2561 92.13 16.59
2 0.2591 0.1772 94.66 33.22
3 0.2071 0.1688 94.70 49.99
4 0.1793 0.1412 95.56 66.72
5 0.1610 0.1307 95.89 84.69
6 0.1282 0.0987 96.99 101.71
7 0.1196 0.0981 97.00 118.38
8 0.1157 0.0959 96.97 134.98
9 0.1140 0.0945 97.03 151.57
10 0.1104 0.0917 97.25 168.11
11 0.1081 0.0910 97.22 184.59
12 0.1070 0.0921 97.20 201.03
13 0.1052 0.0907 97.26 217.47
14 0.1050 0.0880 97.32 234.77
15 0.1069 0.0893 97.28 251.30
16 0.1059 0.0894 97.39 273.30
17 0.1050 0.0909 97.21 311.72
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Fig 4: Graphical Representation for ELU experimental data
Table 6: Swish
EPOCH Training Loss Validation Loss Accuracy (%) Training Time (S)
1 0.4058 0.2002 94.06 39.19
2 0.2107 0.1490 95.22 78.32
3 0.1712 0.1429 95.22 119.57
4 0.1502 0.1091 96.62 158.16
5 0.1341 0.1111 96.48 197.89
6 0.1104 0.0911 97.21 238.00
7 0.1012 0.0895 97.16 277.96
8 0.0998 0.0862 97.41 316.89
9 0.0953 0.0823 97.29 355.97
10 0.0938 0.0822 97.30 394.73
11 0.0923 0.0823 97.40 434.60
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Fig 5: Graphical Representation for swish experimental data
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Data analysis

Accuracy Comparison

1. ReLU (Rectified Linear Unit)

= Best Accuracy: 97.55%

= Training Time: Moderate

= Training Loss History: Quick drop initially, stabilizes
well

= Validation Loss History: Low validation
indicating good generalization

= Accuracy History: Steady
accuracy quickly

loss,

increase, reaches high

Sigmoid

Best Accuracy: 94.87%

Training Time: Longer

Training Loss History: Slower decrease, prone to
gradient saturation

N

= Validation Loss History: Higher validation loss,
indicating overfitting

= Accuracy History: Slower increase, lower overall
accuracy
Tanh

Best Accuracy: 95.34%

Training Time: Longer

Training Loss History: Slower decrease, issues with
gradient saturation

W

= Validation Loss History: Higher validation loss,
indicating overfitting

= Accuracy History: Slower increase, lower overall
accuracy
Leaky ReLU

Best Accuracy: 97.22%

Training Time: Slightly longer than ReLU

Training Loss History: Quick drop initially, stabilizes

well

= Validation Loss History: Low validation loss, good
generalization

= Accuracy History: Steady

accuracy

| | | | [ BN

increase, reaches high

ELU (Exponential Linear Unit)

Best Accuracy: 97.40%

Training Time: Longer

Training Loss History: Quick drop initially, stabilizes

well

= Validation Loss History: Low validation
indicating good generalization

= Accuracy History: Steady

accuracy

= = =l

loss,

increase, reaches high

Swish

Best Accuracy: 97.35%

Training Time: Longer

Training Loss History: Quick drop initially, stabilizes

well

= Validation Loss History: Low validation
indicating good generalization

= Accuracy History: Steady

accuracy

[N I We))

loss,

increase, reaches high

Stability and Convergence

= ReLU: Generally, exhibits stable training with fast
convergence due to its linearity for positive inputs,
though it can suffer from the "dying ReLU" problem.
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= Sigmoid and Tanh: Show signs of instability and slow
convergence, primarily due to gradient saturation,
making them less ideal for deep networks.

= Leaky RelLU: Mitigates the dying neuron issue seen in
ReLU, providing more stable training with faster
convergence.

= ELU and Swish: Stand out for their high stability and
efficient training, with minimal signs of instability and
fast convergence.

Gradient flow
= ReLU and Leaky RelLU: Maintain strong gradients
during backpropagation, promoting faster learning.

= Sigmoid and Tanh: Prone to the vanishing gradient
problem because their gradients become very small for
large positive or negative inputs, causing the gradients
of earlier layers to diminish as they propagate backward
through the network. This leads to slow convergence
and difficulty in training deep networks as the weight
updates become negligible.

= ELU and Swish: Provide smooth and non-zero-centred
activations, maintaining strong gradients without
causing them to explode, leading to more stable and
efficient training.

Optimal activation function

Based on the experimental results, the most suitable
activation functions for the specific task and model tested (a
neural network trained on the MNIST dataset) are ELU
(Exponential Linear Unit) and Swish. These functions
exhibited high stability, fast convergence, and competitive
accuracy, with ELU achieving 97.40% accuracy and Swish
achieving 97.35%. Both activation functions maintain
strong gradients without causing them to vanish or explode,
leading to efficient and stable training processes. ReLU and
Leaky RelL U are also strong candidates due to their good
stability and fast convergence, with accuracies of 97.55%
and 97.22%, respectively.

Generalization

The findings from this experiment can be generalized to
other models and datasets to some extent, especially for
tasks involving image recognition and classification.
Activation functions like ReLU, Leaky ReLU, ELU, and
Swish are widely used in various neural network
architectures due to their ability to maintain strong
gradients, which is crucial for training deep networks.
However, the generalization of these results may be affected
by factors such as the specific architecture of the network,
the nature of the dataset, and the presence of noise or
imbalanced classes in the data. Different tasks, such as
natural language processing or time series prediction, may
benefit from different activation functions due to their
unique characteristics. Therefore, while ELU and Swish are
recommended for their overall performance, it's essential to
consider the specific requirements and challenges of the
new task and dataset.

Future work
Future research can focus on several areas to further
enhance the performance and understanding of activation
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functions. One area is experimenting with newer activation
functions that have shown promise in recent studies, such as
GELU (Gaussian Error Linear Unit) and Mish. Additionally,
exploring the combination of multiple activation functions
within a single network could yield interesting insights. For
instance, using different activation functions in different
layers or even dynamically switching activation functions
during training based on certain criteria. Another avenue for
research is investigating the impact of activation functions
on different types of neural network architectures, such as
convolutional neural networks (CNNSs), recurrent neural
networks (RNNs), and transformers. Moreover, studying the
effects of activation functions on training stability and
generalization in networks with varying depths and
complexities can provide valuable information. Finally,
developing more sophisticated methods for diagnosing and
addressing the vanishing and exploding gradient problems
can contribute to more robust and efficient training
processes.

Conclusion

The key findings from the experiments indicate that ELU
and Swish are the most suitable activation functions for the
neural network trained on the MNIST dataset, achieving
high accuracy (97.40% and 97.35%, respectively), stability,
and fast convergence. ReLU and Leaky ReLU also
performed well, with ReLU achieving the highest accuracy
at 97.55%, offering good stability and fast convergence
despite occasional issues like the "dying ReLU" problem. In
contrast, Sigmoid and Tanh were less effective due to their
slower convergence and tendency to suffer from vanishing
gradient problems, making them less suitable for deep
networks.

These findings have important implications for neural
network training. The choice of activation function is crucial
for ensuring efficient and stable training, with ELU and
Swish being particularly recommended for their superior
performance, especially in deeper networks. ReLU and
Leaky ReLU are also strong candidates, particularly when
training time is a priority. The generalization of these results
suggests that while ELU and Swish are highly effective for
image recognition tasks like MNIST, their benefits may
extend to other models and datasets, especially those
involving deep networks. However, it is essential to
consider the specific characteristics of different tasks and
datasets, and experimentation with various activation
functions is advised.

For future research, further exploration of newer activation
functions like GELU and Mish is suggested, along with
investigating the potential of combining multiple activation
functions within a single network. Studying the effects of
activation  functions on different neural network
architectures, such as CNNs, RNNs, and transformers, and
developing methods to better diagnose and address
vanishing and exploding gradient problems are also valuable
areas of inquiry. In conclusion, the choice of activation
function significantly influences the training dynamics of
neural networks, with ELU and Swish standing out for their
ability to balance stability, convergence speed, and
accuracy, making them excellent choices for deep learning
tasks. Continued research and experimentation with
activation functions will further enhance the robustness and
efficiency of neural network training.
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